
Previous Article
The quasiconvex envelope through firstorder partial differential equations which characterize quasiconvexity of nonsmooth functions
 DCDSB Home
 This Issue

Next Article
Stabilization of a reactiondiffusion system modelling malaria transmission
Selfsimilar focusing in porous media: An explicit calculation
1.  Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, United States 
References:
[1] 
S. B. Angenent and D. G. Aronson, The focussing problem for the radially symmetric porous medium equation, Comm. PDE, 20 (1995), 12171240. doi: 10.1080/03605309508821130. Google Scholar 
[2] 
S. B. Angenent and D. G. Aronson, Selfsimilarity in the postfocussing regime in porous medium flows, Euro. J. Appl. Math., 7 (1996), 277285. Google Scholar 
[3] 
D. G. Aronson, The porous medium equation, in "Nonlinear Diffusion Problems" (Montecatini Terme, 1985), Lecture Notes in Mathematics, 1224, Springer, Berlin, (1986), 146. Google Scholar 
[4] 
D. G. Aronson and J. Graveleau, A selfsimilar solution to the focusing problem for the porous medium equation, Euro. J. Appl. Math., 4 (1993), 6581. Google Scholar 
[5] 
G. I. Barenblatt, "Scaling, SelfSimilarity, and Intermediate Asymptotics," With a foreword by Ya. B. Zeldovich, Cambridge Texts in Applied Mathematics, 14, Cambridge University Press, Cambridge, 1996. Google Scholar 
[6] 
G. I. Barenblatt, On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Meh., 16 (1952), 6778. Google Scholar 
[7] 
Ph. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $\mathbfR^N$ under optimal conditions on initial values, Indiana U. Math. J., 33 (1984), 5187. doi: 10.1512/iumj.1984.33.33003. Google Scholar 
[8] 
B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of the porous medium equation, Comm. PDE, 9 (1984), 409437. Google Scholar 
show all references
References:
[1] 
S. B. Angenent and D. G. Aronson, The focussing problem for the radially symmetric porous medium equation, Comm. PDE, 20 (1995), 12171240. doi: 10.1080/03605309508821130. Google Scholar 
[2] 
S. B. Angenent and D. G. Aronson, Selfsimilarity in the postfocussing regime in porous medium flows, Euro. J. Appl. Math., 7 (1996), 277285. Google Scholar 
[3] 
D. G. Aronson, The porous medium equation, in "Nonlinear Diffusion Problems" (Montecatini Terme, 1985), Lecture Notes in Mathematics, 1224, Springer, Berlin, (1986), 146. Google Scholar 
[4] 
D. G. Aronson and J. Graveleau, A selfsimilar solution to the focusing problem for the porous medium equation, Euro. J. Appl. Math., 4 (1993), 6581. Google Scholar 
[5] 
G. I. Barenblatt, "Scaling, SelfSimilarity, and Intermediate Asymptotics," With a foreword by Ya. B. Zeldovich, Cambridge Texts in Applied Mathematics, 14, Cambridge University Press, Cambridge, 1996. Google Scholar 
[6] 
G. I. Barenblatt, On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Meh., 16 (1952), 6778. Google Scholar 
[7] 
Ph. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $\mathbfR^N$ under optimal conditions on initial values, Indiana U. Math. J., 33 (1984), 5187. doi: 10.1512/iumj.1984.33.33003. Google Scholar 
[8] 
B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of the porous medium equation, Comm. PDE, 9 (1984), 409437. Google Scholar 
[1] 
Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525541. doi: 10.3934/nhm.2012.7.525 
[2] 
Meng Ding, TingZhu Huang, XiLe Zhao, Michael K. Ng, TianHui Ma. Tensor train rank minimization with nonlocal selfsimilarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475498. doi: 10.3934/ipi.2021001 
[3] 
Rogelio Valdez. Selfsimilarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 897922. doi: 10.3934/dcds.2006.16.897 
[4] 
José Ignacio AlvarezHamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. Kcore decomposition of Internet graphs: hierarchies, selfsimilarity and measurement biases. Networks & Heterogeneous Media, 2008, 3 (2) : 371393. doi: 10.3934/nhm.2008.3.371 
[5] 
Peter V. Gordon, Cyrill B. Muratov. Selfsimilarity and longtime behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767780. doi: 10.3934/nhm.2012.7.767 
[6] 
Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via selfsimilarity learning. Inverse Problems & Imaging, , () : . doi: 10.3934/ipi.2021017 
[7] 
Hillel Furstenberg. From invariance to selfsimilarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437449. doi: 10.3934/jmd.2019027 
[8] 
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 13551374. doi: 10.3934/dcds.2014.34.1355 
[9] 
Anna MarciniakCzochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10651077. doi: 10.3934/dcdss.2014.7.1065 
[10] 
Yaqing Liu, Liancun Zheng. Secondorder slip flow of a generalized OldroydB fluid through porous medium. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 20312046. doi: 10.3934/dcdss.2016083 
[11] 
Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via AtanganaBaleanu fractional derivatives. Discrete & Continuous Dynamical Systems  S, 2020, 13 (3) : 377387. doi: 10.3934/dcdss.2020021 
[12] 
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a twophase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 93113. doi: 10.3934/dcdss.2012.5.93 
[13] 
María Anguiano, Francisco Javier SuárezGrau. Newtonian fluid flow in a thin porous medium with nonhomogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289316. doi: 10.3934/nhm.2019012 
[14] 
Wen Wang, Dapeng Xie, Hui Zhou. Local AronsonBénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 19571974. doi: 10.3934/cpaa.2018093 
[15] 
Guillermo Reyes, JuanLuis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337351. doi: 10.3934/nhm.2006.1.337 
[16] 
Luis Caffarelli, JuanLuis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 13931404. doi: 10.3934/dcds.2011.29.1393 
[17] 
R.E. Showalter, Ning Su. Partially saturated flow in a poroelastic medium. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 403420. doi: 10.3934/dcdsb.2001.1.403 
[18] 
Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum. Networks & Heterogeneous Media, 2010, 5 (4) : 765782. doi: 10.3934/nhm.2010.5.765 
[19] 
Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porousmedium equation with convection. Discrete & Continuous Dynamical Systems  B, 2009, 12 (4) : 783796. doi: 10.3934/dcdsb.2009.12.783 
[20] 
Jing Li, Yifu Wang, Jingxue Yin. Nonsharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623636. doi: 10.3934/cpaa.2016.15.623 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]